Link Search Menu Expand Document
Cmajor

std.audio_data

namespace std


The std namespace is the root for all the built-in Cmajor library code.
It contains various child namespaces that group tasks into various sub-categories.

namespace std::audio_datacode


These structures are useful for representing chunks of audio data with a known sample-rate. They're useful types when you're declaring an external variable which is going to hold audio file data or generated waveform data.
Note that duck-typing is used for the types of externals which contain audio data, so you can use your own classes as long as they contain a couple of fields which can hold the frame data and a sample rate. If you need a struct for audio data with more than 2 channels, you can just declare your own type using an appropriately-sized vector for the frames.

Structs

struct Mono
Represents a chunk of mono floating-point audio data.
Type Member
float32[]
frames
float64
sampleRate
struct Stereo
Represents a chunk of stereo, interleaved floating-point audio data.
Type Member
float32<2>[]
frames
float64
sampleRate

processor std::audio_data::SamplePlayer

processor std::audio_data::SamplePlayer (using SampleContent)

This processor will play chunks of audio sample data with a speed ratio applied.
It provides input events to set the audio data, speed ratio and other properties to control playback.
The SampleContent type must be a struct containing a 'frames' member, which is an array of audio frames, and a 'sampleRate' member with the original rate of the audio data.

Endpoints

  • output stream out (SampleContent::frames.elementType)
  • input event content (SampleContent)
  • input event speedRatio (float32)
  • input event shouldLoop (bool)
  • input event position (float32)

Variables

Type Variable Constant
SampleContent
currentContent
float32
currentSpeed
1.0f
float64
currentIndex
float64
indexDelta
bool
isLooping
false

Functions

content
event content (SampleContent newContent)
speedRatio
event speedRatio (float32 newSpeed)
position
event position (float32 newPosition)
shouldLoop
event shouldLoop (bool shouldLoop)
main
void main()

std.convolution

namespace std::convolutioncode

namespace std::convolution (int32 ImpulseChannelCount = 1)

The std::convolution namespace is parameterised, with the ImpulseChannelCount specifying how many channels the impulse contains.

Structs

struct ImpulseChannel
Type Member
ImpulseType[]
data
wrap<ImpulseChannelCount>
channel

Functions

get
float32 get ( ImpulseChannel& this, int32 index)

graph std::convolution::ZeroLatencyProcessor

graph std::convolution::ZeroLatencyProcessor (int32 maxImpulseFrames,
int32 shortBlockSize = 32,
int32 longBlockSize = 512)
The ZeroLatencyProcessor uses a combination of time domain and frequency domain convolutions, using partitioning to produce a zero latency output. The maxImpulseFrames parameter must be specified, and sets the largest impulse that can be convolved with this instance. The shortBlockSize and longBlockSize specify the frequency domain convolution block sizes

Endpoints

  • output stream out (ImpulseType)
  • input stream in (float32)
  • input event impulseData (ImpulseType[])

Nodes

convolution1 = TimeDomainProcessor(shortBlockSize / 2)
convolutionShort = BlockProcessor(longBlockSize - shortBlockSize, shortBlockSize)
convolutionLong = BlockProcessor(maxImpulseFrames, longBlockSize)

Connections

connection in -> convolution1.in, convolutionShort.in, convolutionLong.in
connection convolution1.out -> out
connection convolutionShort.out -> out
connection convolutionLong.out -> out

Functions

impulseData
event impulseData (ImpulseType[] impulse)

graph std::convolution::BlockProcessor

graph std::convolution::BlockProcessor (int32 maxImpulseFrames,
int32 blockSize)
This convolution algorithm uses a frequency domain implementation, with the blockSize altering the overall runtime and latency of the algorithm. Latecy is blockSize/2 frames. Larger block sizes will offer lower CPU use

Endpoints

  • output stream out (ImpulseType)
  • input stream in (float32)
  • input event impulseData (ImpulseType[])

Nodes

fft = FFT(blockSize)
conv = Convolve(maxImpulseFrames, blockSize)[ImpulseChannelCount]
ifft = iFFT(blockSize)[ImpulseChannelCount]

Connections

connection in -> fft -> conv.in
connection conv.out -> ifft
connection arrayToVector(ifft.out) -> out

Functions

impulseData
event impulseData (ImpulseType[] impulse)
arrayToVector
float32<N> arrayToVector<N> (float32[N] a)

processor std::convolution::TimeDomainProcessor

processor std::convolution::TimeDomainProcessor (int32 maxImpulseFrames)
A simple time domain convolution algorithm. This will be costly to execute for longer impulses

Endpoints

  • output stream out (ImpulseType)
  • input stream in (float32)
  • input event impulseData (ImpulseType[])

Variables

Type Variable
float32<maxImpulseFrames>[ImpulseChannelCount]
impulse

Functions

impulseData
event impulseData (ImpulseType[] v)
main
void main()

processor std::convolution::FFT

processor std::convolution::FFT (int32 blockSize)

Endpoints

  • output event out (complex32[blockSize])
  • input stream in (float32)

Variables

Type Variable
complex32[blockSize]
buffer

Functions

main
void main()

processor std::convolution::iFFT

processor std::convolution::iFFT (int32 blockSize)

Endpoints

  • output stream out (float32)
  • input event in (complex32[blockSize])

Variables

Type Variable
complex32[blockSize]
buffer

Functions

in
event in (const complex32[blockSize]& data)
main
void main()

processor std::convolution::Convolve

processor std::convolution::Convolve (int32 maxImpulseFrames,
int32 blockSize)

Endpoints

  • output event out (complex32[blockSize])
  • input event in (complex32[blockSize])
  • input event impulseData (ImpulseChannel)

Variables

Type Variable Constant
int32
activeBlocks
0
numBlocks
(2 * maxImpulseFrames) / blockSize
complex32[numBlocks, blockSize]
impulseFFT
complex32[numBlocks, blockSize]
blockData
wrap<numBlocks>
currentBlock

Functions

in
event in (const complex32[blockSize]& newBlock)
impulseData
event impulseData (ImpulseChannel impulse)

std.envelopes

namespace std::envelopescode


Utilities for calculating and applying static and dynamic gain levels.

processor std::envelopes::FixedASR

processor std::envelopes::FixedASR (float32 attackSeconds,
float32 releaseSeconds)
A very minimal, fixed-length, attack-sustain-release envelope generator.
This has fixed-length attach and release times. Given input events of NoteOn and NoteOff objects, it will emit a stream of output gain levels that can be used to attenuate a voice.

Endpoints

  • output stream gainOut (float32)
  • input event eventIn (std::notes::NoteOn, std::notes::NoteOff)

Variables

Type Variable
float32
keyDownVelocity
float32
currentLevel

Functions

eventIn
event eventIn (std::notes::NoteOn noteOn)
eventIn
event eventIn (std::notes::NoteOff noteOff)
main
void main()

std.filters

namespace std::filterscode

namespace std::filters (using FrameType = float32,
using CoefficientType = float32,
int32 framesPerParameterUpdate = 32)

The std::filters namespace is parameterised, allowing both the FrameType and the CoefficientType to be modified. By default the filters are float32, and hence use 32 bit precision, and filter frames of a single channel. FrameType can be specified as a vector to support more channels (e.g. float<2> for a stereo filter).
For efficiency reasons, modulated parameters are not applied every frame, and the framesPerParameterUpdate parameter can be used to tune the frequency of updates.
Each filter type is provided as both a Processor, which can be included in graphs, and as an Implementation structure, suitable for being composed into a user processor.
The filter processors are parameterised with these parameters setting the initial state of the filter. Parameter modulation is provided by input events.
The filter Implementation structure provides the following functions:
  • create() functions which construct an Implementation with the specified initial properties - this is the typical way that the structs are constructed
  • process() which generates an output frame from an input frame
  • setFrequency()/setMode() functions for filter parameters to allow the filter to be modified post construction.
  • reset() which clears out any internal state, returning it to the state post creation

Constants

Default values if not specified
Type Variable Constant Comment
float32
defaultFrequency
1000.0f
float32
defaultQ
0.707107f
int32
defaultGain
0

namespace std::filters::tpt


These filters are based on the designs outlined in The Art of VA Filter Design by Vadim Zavalishin, with help from Will Pirkle in Virtual Analog Filter Implementation. The topology-preserving transform approach leads to designs where parameter modulation can be applied with minimal instability.
Parameter changes are applied at a lower rate than processor.frequency to reduce computational cost, and the frames between updates can be altered using the framesPerParameterUpdate, smaller numbers causing more frequent updates.

namespace std::filters::tpt::onepole

One pole filter implementation providing low and high pass options. The frequency and mode can be updated at a frequency determined by framesPerParameterUpdate.

Structs

struct Implementation
Type Member
CoefficientType
b
FrameType
z1
int32
mode

Functions

create
Implementation create (int32 mode, float64 processorFrequency, float64 filterFrequency)
setFrequency
void setFrequency ( Implementation& this, float64 processorFrequency, float64 filterFrequency)
reset
void reset ( Implementation& this)
setMode
void setMode ( Implementation& this, int32 mode)
process
FrameType process ( Implementation& this, FrameType x)

processor std::filters::tpt::onepole::Processor

processor std::filters::tpt::onepole::Processor (int32 initialMode = Mode::lowPass,
float32 initialFrequency = defaultFrequency)

Endpoints

  • output stream out (FrameType)
  • input stream in (FrameType)
  • input event mode (int32)
  • input event frequency (float32)

Variables

Type Variable Constant
filter
bool
updateFilter
false
float32
filterFrequency
int32
filterMode

Functions

mode
event mode (int32 m)
frequency
event frequency (float32 f)
main
void main()
reset
void reset()

namespace std::filters::tpt::onepole::Mode

Constants

Type Variable Constant
int32
lowPass
0
int32
highpass
1

namespace std::filters::tpt::svf

State variable filter implementation, suitable for modulation.

Structs

struct Implementation
Type Member
CoefficientType
d
CoefficientType
a
CoefficientType
g1
FrameType[2]
z
int32
mode

Functions

create
Implementation create (int32 mode, float64 processorFrequency, float64 filterFrequency, float64 Q)
setFrequency
void setFrequency ( Implementation& this, float64 processorFrequency, float64 filterFrequency, float64 Q)
reset
void reset ( Implementation& this)
setMode
void setMode ( Implementation& this, int32 mode)
processMultimode
FrameType[3] processMultimode ( Implementation& this, FrameType x)
process
FrameType process ( Implementation& this, FrameType x)

processor std::filters::tpt::svf::Processor

processor std::filters::tpt::svf::Processor (int32 initialMode = Mode::lowPass,
float32 initialFrequency = defaultFrequency,
float32 initialQ = defaultQ)

Endpoints

  • output stream out (FrameType)
  • input stream in (FrameType)
  • input event mode (int32)
  • input event frequency (float32)
  • input event q (float32)

Variables

Type Variable Constant
filter
bool
updateFilter
false
float32
filterFrequency
int32
filterMode
float32
filterQ

Functions

mode
event mode (int32 m)
frequency
event frequency (float32 f)
q
event q (float32 q)
main
void main()
reset
void reset()

processor std::filters::tpt::svf::MultimodeProcessor

processor std::filters::tpt::svf::MultimodeProcessor (float32 initialFrequency = defaultFrequency,
float32 initialQ = defaultQ)

Endpoints

  • output stream lowOut (FrameType)
  • output stream highOut (FrameType)
  • output stream bandOut (FrameType)
  • input stream in (FrameType)
  • input event frequency (float32)
  • input event q (float32)

Variables

Type Variable Constant
filter
bool
updateFilter
true
float32
filterFrequency
float32
filterQ

Functions

frequency
event frequency (float32 f)
q
event q (float32 q)
main
void main()
reset
void reset()

namespace std::filters::tpt::svf::Mode

Constants

Type Variable Constant
int32
lowPass
0
int32
highPass
1
int32
bandPass
2

namespace std::filters::dcblocker


Highpass filter for blocking DC. An implementation of https://ccrma.stanford.edu/~jos/fp/DC_Blocker.html
The DC blocker is a small recursive filter specified by the difference equation:
y(n) = x(n) - x(n-1) + Ry(n-1) 
..where R is a parameter that is typically somewhere between 0.9 and 1

Structs

struct Implementation
Type Member
FrameType
x1
FrameType
y1

Functions

create
Implementation create()
reset
void reset ( Implementation& this)
process
FrameType process ( Implementation& this, FrameType x)

processor std::filters::dcblocker::Processor

Endpoints

  • output stream out (FrameType)
  • input stream in (FrameType)

Variables

Type Variable Constant
filter

Functions

main
void main()
reset
void reset()

namespace std::filters::butterworth

namespace std::filters::butterworth (int32 order = 2)

Butterworth filter, built from cascaded tpt filters.
The order is set at compile time, but the type and frequency can be modulated at runtime.

Structs

struct Implementation
Type Member
tpt::onepole::Implementation
onePole
tpt::svf::Implementation[order / 2]
twoPole

Functions

create
Implementation create (int32 mode, float64 processorFrequency, float64 filterFrequency)
setMode
void setMode ( Implementation& this, int32 mode)
setFrequency
void setFrequency ( Implementation& this, float64 processorFrequency, float64 filterFrequency)
reset
void reset ( Implementation& this)
process
FrameType process ( Implementation& this, FrameType x)

processor std::filters::butterworth::Processor

processor std::filters::butterworth::Processor (int32 initialMode = Mode::lowPass,
float32 initialFrequency = defaultFrequency)

Endpoints

  • output stream out (FrameType)
  • input stream in (FrameType)
  • input event mode (int32)
  • input event frequency (float32)

Variables

Type Variable Constant
filter
bool
updateFilter
true
float32
filterFrequency
int32
filterMode

Functions

mode
event mode (int32 m)
frequency
event frequency (float32 f)
main
void main()
reset
void reset()

namespace std::filters::butterworth::Mode

Constants

Type Variable Constant
int32
lowPass
0
int32
highPass
1

namespace std::filters::crossover


4th Order two band crossover filter
This filter is implemented using the StateVariableFilter and outputs two streams which can be summed to produce a flat response. The crossover frequency can be modulated.

Structs

struct Implementation
Type Member
tpt::svf::Implementation[2]
filters

Functions

create
Implementation create (float64 processorFrequency, float64 filterFrequency)
setFrequency
void setFrequency ( Implementation& this, float64 processorFrequency, float64 filterFrequency)
reset
void reset ( Implementation& this)
process
FrameType[2] process ( Implementation& this, FrameType x)

processor std::filters::crossover::Processor

processor std::filters::crossover::Processor (float32 initialFrequency = defaultFrequency)

Endpoints

  • output stream lowOut (FrameType)
  • output stream highOut (FrameType)
  • input stream in (FrameType)
  • input event frequency (float32)

Variables

Type Variable Constant
filter
bool
updateFilter
true
float32
filterFrequency

Functions

frequency
event frequency (float32 f)
main
void main()
reset
void reset()

namespace std::filters::simper


Simper filter
This filter is based on the design by Andy Simper, and is an implementation of the State Variable filter providing many different operational modes. It is documented here: https://cytomic.com/files/dsp/SvfLinearTrapOptimised2.pdf

Structs

struct Implementation
Type Member
FrameType
ic1eq
FrameType
ic2eq
CoefficientType
a1
CoefficientType
a2
CoefficientType
a3
CoefficientType
f0
CoefficientType
f1
CoefficientType
f2
int32
mode

Functions

create
Implementation create (int32 mode, float64 processorFrequency, float64 filterFrequency, float64 Q, float64 gain)
setMode
void setMode ( Implementation& this, int32 m)
reset
void reset ( Implementation& this)
setFrequency
void setFrequency ( Implementation& this, float64 processorFrequency, float64 filterFrequency, float64 Q, float64 gain)
process
FrameType process ( Implementation& this, FrameType v0)

processor std::filters::simper::Processor

processor std::filters::simper::Processor (int32 initialMode = Mode::lowPass,
float32 initialFrequency = defaultFrequency,
float32 initialQ = defaultQ,
float32 initialGain = defaultGain)

Endpoints

  • output stream out (FrameType)
  • input stream in (FrameType)
  • input event mode (int32)
  • input event frequency (float32)
  • input event q (float32)
  • input event gain (float32)

Variables

Type Variable Constant
filter
bool
updateFilter
false
float32
filterFrequency
int32
filterMode
float32
filterQ
float32
filterGain

Functions

mode
event mode (int32 m)
frequency
event frequency (float32 f)
q
event q (float32 q)
gain
event gain (float32 f)
main
void main()
reset
void reset()

namespace std::filters::simper::Mode

Constants

Type Variable Constant
int32
lowPass
0
int32
highPass
1
int32
bandPass
2
int32
notchPass
3
int32
peakPass
4
int32
allPass
5
int32
lowShelf
6
int32
highShelf
7
int32
bell
8

std.frequency

namespace std::frequencycode


Contains DFT implementations for complex and real numbers
The buffers can be either float32 or float64 (or complex32/complex64). Buffer sizes must be a power of 2.

Functions

realOnlyForwardFFT
Performs a forward DFT. The parameters must be power-of-2 sized arrays of floats. The input parameter takes the real components, and the output array receives the real and imaginary components.
void realOnlyForwardFFT<FloatArray> (const FloatArray& inputData, FloatArray& outputData)
realOnlyInverseFFT
Performs an inverse FFT. The parameters must be power-of-2 sized arrays of floats. The input parameter takes the real and imaginary components, and the output array receives the real components.
void realOnlyInverseFFT<FloatArray> (const FloatArray& inputData, FloatArray& outputData)
complexFFT

Performs an in-place forward FFT on complex data.
void complexFFT<ComplexArray> (ComplexArray& data)
complexIFFT
Performs an in-place inverse FFT on complex data.
void complexIFFT<ComplexArray> (ComplexArray& data)

std.intrinsics

namespace std::intrinsicscode


This namespace contains placeholders and reference implementations of basic functions.
The compiler treats the intrinsics namespace as a special-case, allowing its functions to act as if they're in the global namespace.
When running code, the JIT engines are free to replace the implementation of intrinsic functions with optimised alternatives if possible, although many of the functions in here also provide reference implementations to be used as a fallback when no native version is available.

Functions

max
Compares two scalar or vector values and returns the maximum. For vector operands, this returns a vector of results for each element.
T max<T> (T v1, T v2)
min
Compares two scalar or vector values and returns the minimum. For vector operands, this returns a vector of results for each element.
T min<T> (T v1, T v2)
select
Uses a boolean vector to determine which elements from two other vectors should be combined into the result.
T select<T> (bool<T.size> mask, T trueValues, T falseValues)
clamp

Returns a value which has been clamped to fit within the given range (inclusive of the top).
T clamp<T> (T value, T minimum, T maximum)
wrap
Wraps a value to fit within a range, using a negative-aware modulo operation, and returning zero if the size is zero.
T wrap<T> (T value, T size)
wrap
Wraps a value to fit within a range, using a negative-aware modulo operation, and returning zero if the size is zero.
int32 wrap (int32 value, int32 size)
addModulo2Pi
Adds two floating-point values together, returning the result modulo 2*Pi. This is a common operation for tasks like incrementing the phase of an oscillator.
T addModulo2Pi<T> (T startValue, T valueToAdd)
abs

Returns the absolute value of a scalar or vector value.
T abs<T> (T n)
floor
Returns the largest integer not greater than the argument. This follows the same rules as the standard C/C++ std::floor() function.
T floor<T> (T n)
ceil
Returns the smallest integer not less than the argument. This follows the same rules as the standard C/C++ std::ceil() function.
T ceil<T> (T n)
rint
Rounds the argument to an integer value. This follows the same rules as the standard C/C++ std::rint() function.
T rint<T> (T n)
fmod
Returns the floating point modulo operation of its arguments. This follows the same rules as the standard C/C++ std::fmod() function.
T fmod<T> (T x, T y)
remainder
Returns the floating remainder of its arguments. This follows the same rules as the standard C/C++ std::remainder() function.
T remainder<T> (T x, T y)
lerp
Performs a linear-interpolation between a pair of scalar values.
T lerp<T, P> (T value1, T value2, P proportion)
roundToInt
Returns the nearest integer to a floating point value.
int32 roundToInt (float32 value)
roundToInt
Returns the nearest integer to a floating point value.
int64 roundToInt (float64 value)
sqrt

Returns the square root of its argument.
T sqrt<T> (T n)
pow
Raises a value to the given power.
T pow<T> (T a, T b)
exp
Returns the exponent of a scalar floating-point argument.
T exp<T> (T n)
exp
Returns the exponent of a complex number.
complex32 exp (complex32 n)
exp
Returns the exponent of a complex number.
complex64 exp (complex64 n)
log
Returns the natural log of a scalar floating point argument.
T log<T> (T n)
log10
Returns the base-10 log of a scalar floating point argument.
T log10<T> (T n)
isinf

Checks whether the supplied argument is a floating point INF.
bool isinf<FloatType> (FloatType value)
isnan
Checks whether the supplied argument is a floating point NaN.
bool isnan<FloatType> (FloatType value)
reinterpretFloatToInt
Reinterprets the raw bits of a 32-bit float as an integer.
int32 reinterpretFloatToInt (float32 value)
reinterpretFloatToInt
Reinterprets the raw bits of a 64-bit float as an integer.
int64 reinterpretFloatToInt (float64 value)
reinterpretIntToFloat
Reinterprets the bits of a 32-bit integer as a float32.
float32 reinterpretIntToFloat (int32 value)
reinterpretIntToFloat
Reinterprets the bits of a 64-bit integer as a float64.
float64 reinterpretIntToFloat (int64 value)
sum

Calculates the sum of the elements in a vector or array.
ArrayType.elementType sum<ArrayType> (ArrayType array)
product
Multiplies all the elements of an array or vector of scalar values.
ArrayType.elementType product<ArrayType> (ArrayType array)
read
Returns an element from an array. The index is a generic parameter, and can be either an integer or a float value. If you provide a float index, then it'll round it down to the nearest integer and use that. If the index lies beyond the range of the array, it will be wrapped.
Array.elementType read<Array, IndexType> (const Array& array, IndexType index)
readLinearInterpolated
Linearly-interpolates a value at a position in an array. The first argument must be an array of floating point (or vector float) values, and the index provided should be a floating point value. This will interpolate between adjacent elements in the array to calculate the return value. If the index lies beyond the range of the array, it will be wrapped.
Array.elementType readLinearInterpolated<Array, IndexType> (const Array& array, IndexType index)
anyTrue

Takes a vector or array of bools, and returns true if any of its elements are true.
bool anyTrue<BoolArray> (BoolArray boolArray)
allTrue
Takes a vector or array of bools, and returns true if all of its elements are true.
bool allTrue<BoolArray> (BoolArray boolArray)
allEqual
Takes two array or vector arguments, and returns true if all of their corresponding elements are equal.
bool allEqual<Array1, Array2> (const Array1& array1, const Array2& array2)
swap

Swaps the contents of two assignable values.
void swap<Type> (Type& value1, Type& value2)
sin

Sine of an angle.
T sin<T> (T n)
cos
Cosine of an angle.
T cos<T> (T n)
tan
Tangent of an angle.
T tan<T> (T n)
atan
Arc tangent (inverse tangent) of x.
T atan<T> (T n)
sinh
Hyperbolic sine of an angle.
T sinh<T> (T n)
cosh
Hyperbolic cosine of an angle.
T cosh<T> (T n)
tanh
Hyperbolic tangent of an angle.
T tanh<T> (T n)
atanh
Arc hyperbolic tangent.
T atanh<T> (T n)
asin
Arc sine (inverse sine) of an angle.
T asin<T> (T n)
acos
Arc cosine (inverse cosine) of an angle.
T acos<T> (T n)
asinh
Arc hyperbolic sine.
T asinh<T> (T n)
acosh
Arc hyperbolic cosine.
T acosh<T> (T n)
atan2
Arc tangent of y/x.
T atan2<T> (T y, T x)

std.levels

namespace std::smoothingcode

namespace std::smoothing (using FrameType = float32)

Utilities for calculating and applying smoothing ramps and gain levels. The std::smoothing namespace is parameterised. FrameType defaults to float32, but can be specified to allow support for different precision types (e.g. float64) as well as smoothed values for multi-channel use (e.g. float32<2>)

Structs

struct SmoothedValue

Utilities for smoothing non-audio signals, such as control parameters. Holds a float value and is given a target to move towards over a given time. Call setTarget() to tell the object where to go and how many steps to take to get there, then repeatedly call getNext() to iterate to the target.
Type Member
FrameType
value
FrameType
target
FrameType
increment
int32
remainingSteps

Functions

reset
Immediately resets the value to the given argument
void reset ( SmoothedValue& this, FrameType newValue)
setTarget
Gives the object a target value and the number of steps it should take to reach it.
void setTarget ( SmoothedValue& this, FrameType targetValue, int32 stepsToReachTarget)
getNext
Returns the current value and increments it towards the current target.
FrameType getNext ( SmoothedValue& this)
currentValue
FrameType currentValue ( SmoothedValue& this)

processor std::smoothing::SmoothedValueStream

processor std::smoothing::SmoothedValueStream (float32 smoothingTimeSeconds = 0.2f,
FrameType initialValue = 0.0f)

Takes an input that receives floating point events, and produces a continuous output stream of floats which are smoothed by a specified amount. This is handy for smoothing plugin parameters

Endpoints

  • output stream out (FrameType)
  • input event in (FrameType)

Variables

Type Variable
SmoothedValue
smoothedValue

Functions

in
event in (FrameType newTarget)
main
void main()
init
void init()

namespace std::levelscode

Functions

dBtoGain
Converts a relative gain in decibels to a gain.
T dBtoGain<T> (T decibels)
gainTodB
Converts a gain to a relative number of decibels.
T gainTodB<T> (T gainFactor)

graph std::levels::ConstantGain

graph std::levels::ConstantGain (using FrameType,
float32 gain)

This helper processor simply passes its input through to its output with a constant gain applied. The FrameType parameter could be a float, or a vector of floats. See: DynamicGain, SmoothedGain

Endpoints

  • output stream out (FrameType)
  • input stream in (FrameType)

Connections

connection in * gain -> out

graph std::levels::DynamicGain

graph std::levels::DynamicGain (using FrameType)

This helper processor takes two input streams - one for data and the other for a gain level, and emits the input signal with the gain applied. The FrameType parameter could be a float, or a vector of floats. See: ConstantGain, SmoothedGain

Endpoints

  • output stream out (FrameType)
  • input stream gain (float32)
  • input stream in (FrameType)

Connections

connection in * gain -> out

graph std::levels::SmoothedGain

graph std::levels::SmoothedGain (using FrameType,
float32 smoothingTimeSeconds = 0.2f)

Takes an input stream of the given FrameType, and passes it through using a SmoothedGainParameter processor to apply a smoothed gain to it. The gain level is exposed via the 'volume' input.

Endpoints

  • output stream out (FrameType)
  • input stream volume gainParameter.volume
  • input stream in (FrameType)

Nodes

gainParameter = std::levels::SmoothedGainParameter(smoothingTimeSeconds)

Connections

connection in * gainParameter.gain -> out

processor std::levels::SmoothedGainParameter

processor std::levels::SmoothedGainParameter (float32 smoothingTimeSeconds = 0.2f)

Takes input events which change the level in decibels, and produces an output stream of smoothed gain factors which can be applied to a signal.

Endpoints

  • output stream gain (float32)
  • input event volume (float32)

Variables

Type Variable
std::smoothing::SmoothedValue
smoothedGain

Functions

volume
event volume (float32 newVolumeDecibels)
main
void main()
init
void init()

namespace std::pan_lawcode

Functions

linear
Takes a pan position between -1 and 1 and returns a vector pair of left/right gains using a linear pan-law.
T<2> linear<T> (T panPosition)
centre3dB
Takes a pan position between -1 and 1 and returns a vector pair of left/right gains using a 3dB-centre pan-law.
T<2> centre3dB<T> (T panPosition)

std.matrix

namespace std::matrixcode


This namespace contains various matrix manipulation functions.

Functions

multiply

Returns the matrix product of two 2-dimensional arrays.
ElementType[n, m] multiply<ElementType, n, m, k> (ElementType[n, k] a, ElementType[k, m] b)
dot
Returns the dot-product of two 1-dimensional arrays.
ElementType dot<ElementType, n> (ElementType[n] a, ElementType[n] b)
dot
Returns the dot-product of two 2-dimensional arrays. (The dot product for 2D arrays is the same as a matrix multiplication).
ElementType[n, m] dot<ElementType, n, m, k> (ElementType[n, k] a, ElementType[k, m] b)
inverse
Returns the inverse of the input 2-dimensional array. If no inverse is possible, it returns an empty array. This algorithm uses the Gaussian elimination method to calculate the inverse.
ElementType[n, n] inverse<ElementType, n> (ElementType[n, n] matrix)
add
Returns the sum of two 2-dimensional arrays.
ElementType[n, m] add<ElementType, n, m> (ElementType[n, m] a, ElementType[n, m] b)
subtract
Returns the difference between two 2-dimensional arrays.
ElementType[n, m] subtract<ElementType, n, m> (ElementType[n, m] a, ElementType[n, m] b)

std.midi

Various utilities for handling raw MIDI data.

namespace std::midicode


The classes in the standard library which deal with synthesisers have been designed to avoid raw MIDI messages, and instead to work with strongly-typed event objects for note-ons/offs, pitch-bends, etc, which are vastly more usable than a 3-byte code that was designed for a 1980s serial link.

Structs

struct Message
Holds a short (3-byte) MIDI message.
Type Member Comment
int32
message
This contains 3 packed bytes, arranged as (byte2 | (byte1 << 8) | (byte0 << 16)). This layout means that when you view the value in hex in your debugger, it reads in the natural order for a MIDI message.

Functions

getByte1
int32 getByte1 (const Message& this)
getByte2
int32 getByte2 (const Message& this)
getByte3
int32 getByte3 (const Message& this)
getMessageType
int32 getMessageType (const Message& this)
getChannel0to15
int32 getChannel0to15 (const Message& this)
getChannel1to16
int32 getChannel1to16 (const Message& this)
get14BitValue
int32 get14BitValue (const Message& this)
isNoteOn
bool isNoteOn (const Message& this)
isNoteOff
bool isNoteOff (const Message& this)
getNoteNumber
int32 getNoteNumber (const Message& this)
getPitch
float32 getPitch (const Message& this)
getVelocity
int32 getVelocity (const Message& this)
getFloatVelocity
float32 getFloatVelocity (const Message& this)
isProgramChange
bool isProgramChange (const Message& this)
getProgramChangeNumber
int32 getProgramChangeNumber (const Message& this)
isPitchWheel
bool isPitchWheel (const Message& this)
getPitchWheelValue
int32 getPitchWheelValue (const Message& this)
isAftertouch
bool isAftertouch (const Message& this)
getAfterTouchValue
int32 getAfterTouchValue (const Message& this)
isChannelPressure
bool isChannelPressure (const Message& this)
getChannelPressureValue
int32 getChannelPressureValue (const Message& this)
getFloatChannelPressureValue
float32 getFloatChannelPressureValue (const Message& this)
isController
bool isController (const Message& this)
isControllerNumber
bool isControllerNumber (const Message& this, int32 number)
getControllerNumber
int32 getControllerNumber (const Message& this)
getControllerValue
int32 getControllerValue (const Message& this)
getFloatControllerValue
float32 getFloatControllerValue (const Message& this)
isAllNotesOff
bool isAllNotesOff (const Message& this)
isAllSoundOff
bool isAllSoundOff (const Message& this)
isQuarterFrame
bool isQuarterFrame (const Message& this)
isClock
bool isClock (const Message& this)
isStart
bool isStart (const Message& this)
isContinue
bool isContinue (const Message& this)
isStop
bool isStop (const Message& this)
isActiveSense
bool isActiveSense (const Message& this)
isMetaEvent
bool isMetaEvent (const Message& this)
isSongPositionPointer
bool isSongPositionPointer (const Message& this)
getSongPositionPointerValue
int32 getSongPositionPointerValue (const Message& this)
createMessage

Creates a short MIDI message object from the raw bytes
Message createMessage (int32 byte1, int32 byte2, int32 byte3)

Constants

standard MPE range of 48 semitones
MPE slide controller number
Type Variable Constant Comment
float32
semitoneBendRange
48.0f
int32
slideController
74

processor std::midi::MPEConverter


Accepts an input stream of raw MIDI MPE events and converts them to a stream of note event objects which can be more easily used by synthesiser classes.

Endpoints

Functions

parseMIDI
event parseMIDI ( Message message)

processor std::midi::NoteToMIDI


Accepts an input of note events, and converts them to a stream of short midi messages.

Endpoints

Functions

eventIn
event eventIn ( NoteOn e)
eventIn
event eventIn ( NoteOff e)
eventIn
event eventIn ( PitchBend e)
eventIn
event eventIn ( Slide e)
eventIn
event eventIn ( Pressure e)
eventIn
event eventIn ( Control e)

std.mixers

namespace std::mixerscode


These processors can be used to mix various combinations of audio streams together with static or dynamic gains.

processor std::mixers::StereoToMono

processor std::mixers::StereoToMono (using SampleType)

Simple utility processor that takes a vector size 2 and outputs the sum of its elements.

Endpoints

  • output stream out (SampleType)
  • input stream in (SampleType<2>)

Functions

main
void main()

processor std::mixers::MonoToStereo

processor std::mixers::MonoToStereo (using SampleType)

Simple utility processor that takes a scalar input and outputs a vector size 2 which contains two copies of the input value

Endpoints

  • output stream out (SampleType<2>)
  • input stream in (SampleType)

Functions

main
void main()

processor std::mixers::DynamicSum

processor std::mixers::DynamicSum (using FrameType)

Takes two input streams and two gain streams which it uses to attenuate the inputs. Their result is then emitted. FrameType can be a float or float vector type.

Endpoints

  • output stream out (FrameType)
  • input stream in1 (FrameType)
  • input stream in2 (FrameType)
  • input stream gain1 (float32)
  • input stream gain2 (float32)

Functions

main
void main()

processor std::mixers::ConstantSum

processor std::mixers::ConstantSum (using FrameType,
float32 inputGain1 = 1.0f,
float32 inputGain2 = 1.0f)

Takes two input streams which it adds together after applying some optional constant gains. FrameType can be a float or float vector type.

Endpoints

  • output stream out (FrameType)
  • input stream in1 (FrameType)
  • input stream in2 (FrameType)

Functions

main
void main()

processor std::mixers::Interpolator

processor std::mixers::Interpolator (using FrameType,
float32 mixRange)

Takes two input streams and outputs a dynamic mix of their values, using a third stream to control the mix.
mixRange determines the range of values that the mix stream will take. So the mix input is expected to be between 0 and mixRange, where mix = 0 will cause 100% of in1 to be emitted, and mix = mixRange will cause 100% of in2 to be emitted.
This processor is handy as a wet/dry mixer - for example you could connect a dry stream to in1, a wet stream to in2, and set mixRange to 100. Then, the mix input will act as a "percentage wet" control.

Endpoints

  • output stream out (FrameType)
  • input stream in1 (FrameType)
  • input stream in2 (FrameType)
  • input stream mix (float32)

Functions

main
void main()

std.noise

namespace std::noisecode


These processors can be used to generate various flavours of noise.

processor std::noise::White

Simple white noise generator. See https://en.wikipedia.org/wiki/White_noise

Endpoints

  • output stream out (float32)

Variables

Type Variable
RNG
rng

Functions

init
void init()
main
void main()

processor std::noise::Brown

Brown (a.k.a. Brownian) noise generator. See https://en.wikipedia.org/wiki/Brownian_noise

Endpoints

  • output stream out (float32)

Variables

Type Variable Constant
RNG
rng
float32
lastLevel
float32
filter
0.998f
float32
scale
32.0f

Functions

init
void init()
main
void main()

processor std::noise::Pink

Endpoints

  • output stream out (float32)

Variables

Type Variable
RNG
rng
float32[12]
values
int32
sampleCount
float32
lastLevel

Functions

init
void init()
main
void main()

std.notes

namespace std::notescode


These structs are used for events that model the start/stop/control of notes that are playing in synthesisers.
Unlike sending raw MIDI around, these are strongly typed and use floating point data so are far nicer to work with.
The objects include a channel ID field, so that a multi-channel input device can indicate which events should be applied to each of the active notes that are being played.

Structs

struct NoteOn
Type Member Comment
int32
channel
This channel ID is used to associate events which act on a particular voice. When a NoteOn object is sent, the sender will create a unique ID, and use the same ID for any subsequent pitch and control events, and for the final matching NoteOff event.
float32
pitch
The pitch uses the same semitone scale as MIDI note numbers, between 0 and 127, where middle C = 60.
float32
velocity
Velocity is between 0 and 1
struct NoteOff
Type Member Comment
int32
channel
This channel ID can be used to associate this NoteOff event with the earlier NoteOn to which it applies.
float32
pitch
You may not care exactly what the pitch is when a note is released, but in case it's needed, it's included here.
float32
velocity
Indicates how quickly the key was released: range is 0 to 1.
struct PitchBend
Type Member Comment
int32
channel
This channel ID can be used to associate this event with the earlier NoteOn to which it applies.
float32
bendSemitones
The number of semitones to bend up from the original note-on pitch.
struct Pressure
Type Member Comment
int32
channel
This channel ID can be used to associate this event with the earlier NoteOn to which it applies.
float32
pressure
Key pressure is in the range 0 to 1
struct Slide
"Slide" refers to a Y-axis controller parameter. (In MPE input devices, this is a MIDI controller number 74)
Type Member Comment
int32
channel
This channel ID can be used to associate this event with the earlier NoteOn to which it applies.
float32
slide
The slide position ranges from 0 to 1. Exactly what you choose to do with it depends on the instrument.
struct Control
Type Member Comment
int32
channel
This channel ID can be used to associate this event with the earlier NoteOn to which it applies.
int32
control
This could be used for any kind of controller index, but is probably best used for MIDI controller numbers.
float32
value
The normalised value of the controller, between 0 and 1

Functions

frequencyToNote

Returns the MIDI note equivalent for a frequency in Hz. This uses the standard A = 440Hz reference tuning. See: noteToFrequency
float32 frequencyToNote (float32 frequency)
frequencyToNote
Returns the MIDI note equivalent for a frequency in Hz. The frequencyOfA parameter lets you use non-standard tunings if you need to. See: noteToFrequency
float32 frequencyToNote (float32 frequency, float32 frequencyOfA)
noteToFrequency
Returns the frequency in Hz for a MIDI note number. You can provide either an integer or floating point argument - the MIDI note scale is in semitone units from 0 to 127, where middle C = 60. This uses the standard A = 440Hz reference tuning. See: frequencyToNote
float32 noteToFrequency<T> (T midiNoteNumber)
noteToFrequency
Returns the frequency in Hz for a MIDI note number. You can provide either an integer or floating point argument - the MIDI note scale is in semitone units from 0 to 127, where middle C = 60. The frequencyOfA parameter lets you use non-standard tunings if you need to. See: frequencyToNote
float32 noteToFrequency<T> (T midiNoteNumber, float32 frequencyOfA)
getSpeedRatioBetween
Calculates the speed ratio by which playback must be changed to re-pitch a given source note to a target note.
float32 getSpeedRatioBetween (float32 sourceMIDINote, float32 targetMIDINote)
getSpeedRatioBetween
Given a source with a known sample rate and pitch, this calculates the ratio at which it would need to be sped-up in order to achieve a target pitch and sample-rate.
float64 getSpeedRatioBetween (float64 sourceSampleRate, float32 sourceMIDINote, float64 targetSampleRate, float32 targetMIDINote)

std.oscillators

namespace std::oscillatorscode


These utility functions and processors provide oscillators such as sine, square, triangle and sawtooth.

Structs

struct PhasorState

A class to manage a phase and increment that loops between 0 and 1.
Type Member
float32
phase
float32
increment
struct PolyblepState
Type Member
PhasorState
phasor
float32
accumulator

Functions

setFrequency
void setFrequency ( PhasorState& this, float64 outputFrequencyHz, float64 oscillatorFrequencyHz)
setFrequency
void setFrequency ( PolyblepState& this, float64 outputFrequencyHz, float64 oscillatorFrequencyHz)
nextSine
float32 nextSine ( PolyblepState& this)
nextSquare
Returns the sample of a square wave.
float32 nextSquare ( PolyblepState& this)
nextSawtooth
Returns the sample of a sawtooth wave.
float32 nextSawtooth ( PolyblepState& this)
nextTriangle
float32 nextTriangle ( PolyblepState& this)

processor std::oscillators::Phasor

processor std::oscillators::Phasor (using FrameType,
float32 initialFrequency = 1000)

A processor which generates a unipolar ramp, and has an input to control its frequency. The FrameType parameter could be a float or a float vector.

Endpoints

  • output stream out (FrameType)
  • input event frequencyIn (float32)

Variables

Type Variable
PhasorState
phasor

Functions

init
void init()
frequencyIn
event frequencyIn (float32 newFrequency)
main
void main()

processor std::oscillators::Sine

processor std::oscillators::Sine (using FrameType,
float32 initialFrequency = 440.0f)

A basic sinewave generation processor with an input to control its frequency. The FrameType parameter could be a float or a float vector.

Endpoints

  • output stream out (FrameType)
  • input event frequencyIn (float32)

Variables

Type Variable
PhasorState
phasor

Functions

init
void init()
frequencyIn
event frequencyIn (float32 newFrequency)
main
void main()

processor std::oscillators::PolyblepOscillator

processor std::oscillators::PolyblepOscillator (using FrameType,
Shape initialShape = Shape::sawtoothUp,
float32 initialFrequency = 440.0f)

Uses a polyblep algorithm to generate a wave, with inputs to control its shape and frequency.

Endpoints

  • output stream out (FrameType)
  • input event frequencyIn (float32)
  • input event shapeIn (float32)

Variables

Type Variable Constant
PolyblepState
polyblep
Shape
currentShape

Functions

init
void init()
frequencyIn
event frequencyIn (float32 newFrequency)
shapeIn
event shapeIn (float32 newShape)
main
void main()

processor std::oscillators::LFO

processor std::oscillators::LFO (Shape initialShape = Shape::sine,
float32 initialFrequency = 1.0f,
float32 initialAmplitude = 1.0f,
float32 initialOffset = 0.0f)

A LFO processor with event inputs to control its parameters.

Endpoints

  • output stream out (float32)
  • input event shapeIn (float32)
  • input event rateHzIn (float32)
  • input event rateTempoIn (float32)
  • input event amplitudeIn (float32)
  • input event offsetIn (float32)
  • input event rateModeIn (float32)
  • input event syncIn (float32)
  • input event positionIn (std::timeline::Position)
  • input event transportStateIn (std::timeline::TransportState)
  • input event tempoIn (std::timeline::Tempo)

Variables

Type Variable Constant
Shape
currentShape
std::smoothing::SmoothedValue
currentAmplitude
float32
currentOffset
bool
isUsingTempo
false
bool
isSyncActive
false
bool
isPlaying
false
float32
cyclesPerBeat
1
float64
lastQuarterNotePos
float32
currentPhase
float32
currentRandomValue
float32
phaseIncrementHz
initialFrequency * float32(processor.period)
float32
phaseIncrementTempo
120.0f * float32(processor.period / 60)
std::random::RNG
rng

Functions

positionIn
event positionIn (std::timeline::Position newPos)
transportStateIn
event transportStateIn (std::timeline::TransportState newState)
tempoIn
event tempoIn (std::timeline::Tempo newTempo)
rateTempoIn
event rateTempoIn (float32 newNumBeats)
amplitudeIn
event amplitudeIn (float32 newAmplitude)
offsetIn
event offsetIn (float32 newOffset)
shapeIn
event shapeIn (float32 newShape)
rateModeIn
event rateModeIn (float32 isTempo)
syncIn
event syncIn (float32 isSyncing)
rateHzIn
event rateHzIn (float32 newRateHz)
isRandomMode
bool isRandomMode()
init
void init()
main
void main()
getNextSample
float32 getNextSample()
resetRandomValue
void resetRandomValue()
advancePhase
void advancePhase (float32 increment)

namespace std::oscillators::waveshape

namespace std::oscillators::waveshape (using SampleType = float32)

Functions

sine

Returns a sine wave, where phase is in the range 0 to 1
SampleType sine<T> (T phase)
sine
Returns a sine wave with a given amplitude, where phase is in the range 0 to 1
SampleType sine<T> (T phase, SampleType amplitude)
sine
Returns a sine wave with a given amplitude and offset, where phase is in the range 0 to 1
SampleType sine<T> (T phase, SampleType amplitude, SampleType offset)
square

Returns a bipolar square wave, where phase is in the range 0 to 1
SampleType square<T> (T phase)
square
Returns a square wave with a given amplitude, where phase is in the range 0 to 1
SampleType square<T> (T phase, SampleType amplitude)
square
Returns a square wave with a given amplitude and offset, where phase is in the range 0 to 1
SampleType square<T> (T phase, SampleType amplitude, SampleType offset)
triangle

Returns a bipolar triangle wave, where phase is in the range 0 to 1
SampleType triangle<T> (T phase)
triangle
Returns a triangle wave with a given amplitude, where phase is in the range 0 to 1
SampleType triangle<T> (T phase, SampleType amplitude)
triangle
Returns a triangle wave with a given amplitude and offset, where phase is in the range 0 to 1
SampleType triangle<T> (T phase, SampleType amplitude, SampleType offset)
sawtoothUp

Returns a bipolar upwards sawtooth wave, where phase is in the range 0 to 1
SampleType sawtoothUp<T> (T phase)
sawtoothUp
Returns an upwards sawtooth wave with a given amplitude, where phase is in the range 0 to 1
SampleType sawtoothUp<T> (T phase, SampleType amplitude)
sawtoothUp
Returns an upwards sawtooth wave with a given amplitude and offset, where phase is in the range 0 to 1
SampleType sawtoothUp<T> (T phase, SampleType amplitude, SampleType offset)
sawtoothDown

Returns a bipolar downwards sawtooth wave, where phase is in the range 0 to 1
SampleType sawtoothDown<T> (T phase)
sawtoothDown
Returns an downwards sawtooth wave with a given amplitude, where phase is in the range 0 to 1
SampleType sawtoothDown<T> (T phase, SampleType amplitude)
sawtoothDown
Returns an downwards sawtooth wave with a given amplitude and offset, where phase is in the range 0 to 1
SampleType sawtoothDown<T> (T phase, SampleType amplitude, SampleType offset)
polyblep
SampleType polyblep<T> (T phase, T increment)
polyblep_square
SampleType polyblep_square<T> (T phase, T increment)
polyblep_sawtooth
SampleType polyblep_sawtooth<T> (T phase, T increment)
generate

Returns a wave of the shape type passed in as an argument, where phase is in the range 0 to 1
SampleType generate<T> (Shape waveShapeType, T phase)
generate
Returns a wave of the shape type passed in as an argument, where phase is in the range 0 to 1
SampleType generate<T> (Shape waveShapeType, T phase, SampleType amplitude, SampleType offset)

std.random

namespace std::randomcode


If you're writing code that needs to be cryptographically secure, then this is not the random number generation library that you want. The target audience for these classes are those who need quick-and-dirty RNGs for noise generation and similar non-critical tasks.
When seeding RNGs, the processor.id and processor.session values are very useful:
  • processor.id is different for each instance of a processor, but the same for each run of the program. If you have multiple instances of a processor node which each have an RNG, then if you seed them with a value based on processor.id, they'll each use a different stream of values, but the sequences will be the same each time the program runs.
  • processor.session is the same for all processors, but different each time the program runs, so if you use it as part of your seed, it'll make the program behave differently each time.

Structs

struct RNG
This default RNG is a basic linear congruential generator. See https://en.wikipedia.org/wiki/Lehmer_random_number_generator
Type Member Comment
int64
state
The Lehmer algorithm uses a simple 64-bit state which mutates each time a number is generated.

Functions

seed
Resets the generator with a given seed.
void seed ( RNG& this, int64 newSeed)
getInt32
Returns a positive int32 between 0 and 0x7fffffff
int32 getInt32 ( RNG& this)
getUnipolar
Returns a value between 0 and 1.
float32 getUnipolar ( RNG& this)
getBipolar
Returns a value between -1 and 1.
float32 getBipolar ( RNG& this)
getFloat
Returns a floating point value between 0 and maximumValue
float32 getFloat ( RNG& this, float32 maximumValue)

std.timeline

namespace std::timelinecode


This namespace contains various types and functions for dealing with tempos, positions and events that describe DAW-style timelines.

Structs

struct Tempo
Type Member Comment
float32
bpm
BPM = beats per minute :)
struct TimeSignature
Type Member
int32
numerator
int32
denominator
struct TransportState

Indicates whether a host is currently playing or recording. This struct is intended for purposes like sending as an event into a plugin to tell it when the host's playback state changes.
Type Member Comment
int32
flags
This is used as a bit-field, where bit 0 = playing bit 1 = recording bit 2 = looping
struct Position

This struct holds data that a host may want to send as an event to a plugin to update it with various measurements of positions along its timeline.
Type Member Comment
int64
frameIndex
The frame index, from the start of the host's timeline.
float64
quarterNote
A floating-point count of quarter-notes from the start of the host's timeline. If a host doesn't count time in terms of beats, then this could be left as 0.
float64
barStartQuarterNote
The position of the start of the current bar, measured as the number of quarter-notes from the start of the host's timeline. If a host doesn't count time in terms of beats, then this could be left as 0. This is useful in conjunction with quarterNote if you need to know e.g. how many beats you are into the current bar.

Functions

secondsPerBeat
float32 secondsPerBeat (const Tempo& this)
framesPerBeat
float64 framesPerBeat (const Tempo& this, float64 framesPerSecond)
secondsPerQuarterNote
float32 secondsPerQuarterNote (const Tempo& this, TimeSignature timeSig)
framesPerQuarterNote
float64 framesPerQuarterNote (const Tempo& this, TimeSignature timeSig, float64 framesPerSecond)
beatsPerQuarterNote
float32 beatsPerQuarterNote (const TimeSignature& this)
quarterNotesPerBeat
float32 quarterNotesPerBeat (const TimeSignature& this)
isStopped
bool isStopped (const TransportState& this)
isPlaying
bool isPlaying (const TransportState& this)
isRecording
bool isRecording (const TransportState& this)
isLooping
bool isLooping (const TransportState& this)

std.voices

namespace std::voicescode


This module demonstrates a simple voice-allocation algorithm.
The way it's structured is that you pass an incoming stream of note events to the voice allocator processor, and it redirects them to an array of destination processors which each handle a single voice.
The voice allocators use the channel property of the incoming events to group them together, and take care of ensuring that each target voice only receives the events from one channel at a time.

processor std::voices::VoiceAllocator

processor std::voices::VoiceAllocator (int32 numVoices,
int32 MPEMasterChannel = 0)
A basic least-recently-used voice allocator.
If there's an inactive voice, then a new note will be assigned to it, otherwise it will steal the least-recently-used active voice. For more fancy note-stealing algorithms, you can use this as an example and add your own logic!

Endpoints

  • output event voiceEventOut (std::notes::NoteOn, std::notes::NoteOff, std::notes::PitchBend, std::notes::Slide, std::notes::Pressure, std::notes::Control)
  • input event eventIn (std::notes::NoteOn, std::notes::NoteOff, std::notes::PitchBend, std::notes::Slide, std::notes::Pressure, std::notes::Control)

Structs

struct VoiceState
Type Member
bool
isActive
bool
isReleasing
int32
channel
int32
age
float32
pitch

Variables

Type Variable Constant
VoiceState[numVoices]
voiceState
int32
nextActiveTime
0x70000000
int32
nextInactiveTime
1
bool
mpeMasterSustainActive
int64
perChannelSustainActive

Functions

eventIn
event eventIn (std::notes::NoteOn noteOn)
eventIn
event eventIn (std::notes::NoteOff noteOff)
eventIn
event eventIn (std::notes::PitchBend bend)
eventIn
event eventIn (std::notes::Pressure pressure)
eventIn
event eventIn (std::notes::Slide slide)
eventIn
event eventIn (std::notes::Control control)
start
void start ( VoiceState& this, int32 channel, float32 pitch)
free
void free ( VoiceState& this)
isSustainActive
one per bit (assumes that channel IDs are <64, and could be made more general)
bool isSustainActive (int32 channel)
setChannelSustain
void setChannelSustain (int32 channel, bool active)
findOldestIndex
wrap<numVoices> findOldestIndex()